Skip to main content

How to create a GenAI ChatBot using Streamlit and Anthropic Claude LLM Model

GenAI Chatbot with Streamlit and Anthropic Claude LLM model

GenAI-ChatBot is a chatbot application that utilizes Streamlit for the frontend and LangChain for the backend. The chatbot integrates with AWS Bedrock for language model interactions, enabling intelligent and dynamic conversations.

Features

  • Conversational AI chatbot powered by LangChain.
  • Interactive web-based UI built with Streamlit.
  • AWS Bedrock integration for natural language responses.
  • Supports conversation memory for contextual awareness.
  • Easy setup and deployment.

GitHub Repo: Clone and use latest code from here.

https://github.com/SolutionInsights-git/GenAI-Chatbot



Comments

Popular posts from this blog

How to Implement Lombok in IntelliJ for Java Projects: A Step-by-Step Guide

Lombok in IntelliJ for Java Projects Implementing Lombok in your Java project can streamline your code by reducing boilerplate. Follow these steps to set up Lombok in IntelliJ: Step 1 :  Ensure Java SDK Version. Ensure that your project is using Java 8 or higher.  You can check and set the Java SDK version in pom.xml: XML <properties> <maven.compiler.source>1.8</maven.compiler.source> <maven.compiler.target>1.8</maven.compiler.target> </properties> Step 2 : Add Lombok Dependency to pom.xmlOpen the pom.xml file in your project. Add the following Lombok dependency inside the <dependencies> section: XML <dependency> <groupId>org.projectlombok</groupId> <artifactId>lombok</artifactId> <version>1.18.24</version> <scope>provided</scope> </dependency> Step 3 : Download Lombok Plugin for IntelliJ IDEAGo to File > Settings (or press Ctrl+Alt+S). Navigate to Plugins. Search for Lombo...

How to create a GenAI Talking Avatar ChatBot using Streamlit and Anthropic Claude LLM Model

GenAI Talking Avatar ChatBot   using Streamlit and Anthropic Claude LLM Model GenAI-Talking-Avatar-Chatbot is a web application that allows users to interact with an AI-powered talking chatbot with a static avatar. The chatbot uses AWS Bedrock for generating responses and Google Text-to-Speech (gTTS) for voice output. The backend is built with FastAPI, and the frontend uses Streamlit for the user interface. Features API Backend (api.py) Provides an API endpoint to handle chat requests. Uses AWS Bedrock to generate AI responses in a specified JSON format. Ensures the responses include the message, avatar expression, and voice tone. Includes a health check endpoint to verify the API status. Chat UI (chat_frontend.py) Chat Interface: Provides a chat interface where users can input their queries and receive responses from the AI assistant. Avatar Display: Displays an avatar that changes expressions based on the AI assistant's responses and actions (e.g., thinking, speaking). AI Respons...

How to Implement Infinispan Cache in Spring Boot with Java 21: A Step-by-Step Guide for Efficient Caching

Infinispan Cache in Spring Boot with Java 21 : Let’s learn how to integrate Infinispan cache in your Spring Boot project using Java 21. This post covers adding dependencies, enabling caching, configuring Infinispan, and more to enhance your application’s performance. Step 1: Add Infinispan Dependencies Add the necessary Infinispan dependencies to your pom.xml file. XML <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-cache</artifactId> </dependency> <dependency> <groupId>org.springframework.session</groupId> <artifactId>spring-session-core</artifactId> <version>2.5.4</version> </dependency> <dependency> <groupId>org.infinispan</groupId> <artifactId>infinispan-spring-boot-starter-embedded</artifactId> <version>13.0.0.Final</version> </dependency> For Gradle, add the following dependencies to your build.gradle file: im...